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Abstract. The equilibrium of large two-dimensional (2D) model crystals with polymorph
structures (screw, bilayer and monochess) and asymmetrical interactions are investigated
microscopically using two different atomistic approaches: the method of Stranski and Kaischew and
the Wulff construction which is based on the polar diagram of surface energy. Each model proposes
at least two structurally different surfaces (periphery rows), some of them being alternating.
Accounting for nearest neighbour interactions, it is established that only some of the alternating
surfaces belong to the equilibrium forms. The equilibrium surfaces of a 2D Kossel crystal appear
as a limiting case.

The orientation dependence of the specific surface energyσ for these models is determined
by mathematical induction in a discreteσ(m, n) presentation of the polar diagram. The usual
continuous presentationσ(θ) has the meaning only of fitting curves, not all points of which have a
physical meaning. Theseσ(θ) dependencies cannot be constructed without in advance analysing
the discreteσ(m, n) presentations. The latter allows determination not only of the number of fitting
curves, but also of their unknown coefficients.

1. Introduction

There exist two different atomistic approaches for treating the problem of crystal equilibrium
on a microscopic level. The first approach, developed by Stranski and Kaischew [1], is based
on comparison of the work for separation of atoms on the crystal surface with their energy
in the half crystal position (the lattice energy) for large crystals or with the mean separation
work for small crystals (see also [2]). The second approach, originating from Ehrenfest [3],
Yamada [4] and Landau [5], is based on the dependence of the specific surface energyσ on
the orientation angleθ (σ(θ), called the polar diagram). As shown by Stranski and Kaischew
[1], Wolff [6], Mullins [7] and Bennema [8], this approach offers a principal possibility for
correlating the intermolecular bond with the surface free energy. A general expression for the
polar diagram in terms of broken bonds energy is proposed by Wolff [6]. The used formalism
is based on an atomistic version of the definition of Born and Stern [9] of surface energy. It
is applied to many real structures. For example, in the instructive case of a two-dimensional
(2D) Kossel crystal with nearest neighbour interactions in the lattice it is demonstrated that
the polar diagramσ(θ) can be constructed by knowing the bond energyϕ only [8].

Using these two atomistic approaches, this paper investigates the equilibrium of some
2D model crystals with asymmetrical nearest neighbour interactions. The models considered
propose a great variety of polymorph structures and different surface structures, including
alternating ones. (The surface of the 2D crystal to be investigated here is the line of its
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Figure 1. Interaction energyϕi between nearest neighbour building elements of (a) 2D model
crystals and (b) a 2D Kossel crystal. For concreteness,ϕ1 > ϕ2 > ϕ3 > ϕ4 > ϕ5 > ϕ6 > ϕ7 is
used.

Figure 2. Examples of 2D model crystals with different polymorph structures: (a) monochess,
(b) bilayer, (c) screw, (d) bichess, (e) monolayer and (f) model of a 2D Kossel crystal. The building
blocks: monomer (e), (f), dimer (a), (b) and quadrumer (c), (d), outlined by ovals, are located in
the corresponding half crystal position. The calculated values of the lattice energy8L are denoted.

periphery.) Appropriate algorithms are proposed for construction of their polar diagrams
in a discrete presentation, respectively for atomistic determination of the coefficients in
a continuous presentation. The influence of the asymmetry of interaction forces on the
equilibrium form as well as of the existence of alternating surfaces is discussed for three
polymorph crystals. The advantage of the discrete polar diagrams is considered.

2. Model description

The 2D models of crystals with asymmetrical interactions are constructed by using identical
building elements represented graphically as black–white squares (figure 1). The interaction
energy between two elements is assumed to be highest (ϕ1) and lowest (ϕ7) when they are
oriented to each other with, respectively, their black sides and white sides. As shown in
figure 2, a great variety of such polymorph structures can be created: monolayer, bilayer,
monochess, bichess, screw etc (one of them, the 2D screw lattice, was discussed in detail in



Equilibrium of 2D model crystals 9995

our previous papers [10]). Different blocks are used as building blocks (outlined by ovals in
figure 2): monomer (single building element)—figure 2(e), dimers (two neighbour building
elements)—figures 2(a), (b), and quadrumers (four neighbour building elements located in a
square)—figures 2(c), (d). Such a lattice appears to be a generalization of the well known 2D
Kossel crystal (figure 2(f)) [1, 2].

Each 2D block lattice results in at least two structurally different{10} and/or{01} surfaces
(periphery rows), some of them being alternating (figure 3). For example, the surface structures
of the bilayer lattice (figure 3(b)) are white (W), black (B) and black–white (BW), according
to the orientation of their surface located building elements. The screw lattice surfaces
(figure 3(c)) are predominantly white (‘W’) or predominantly black (‘B’), and the monochess
lattice surfaces are two different kinds of black–white—(BW)′ and (BW)′′. The so called
alternating surfaces are crystallographically identical and replace alternatively one another
when an additional ‘layer’ (periphery row) is attached to the lattice or separated from it. The
couples of alternating surfaces are indicated by arrows in figure 3: (W) and (B) in figure 3(b)
and (‘W’) and (‘B’) in figure 3(c).

Figure 3. {10} and/or{01} surfaces (periphery rows) of 2D polymorph crystals: (a) monochess,
(b) bilayer and (c) screw. The different surface structures are called: white (W), ‘white’ (‘W’),
black (B), ‘black’ (‘B’) and different types of black–white—(BW),(BW)′ and(BW)′′. The couples
of alternating surfaces are indicated by arrows: (W) and (B) in case (b), and (‘W’) and (‘B’) in
case (c).

3. Separation work and equilibrium of the 2D model crystals

According to Stranski [11], the equilibrium of a crystal with its environment is determined by
the lattice energy8L (per one element). This energy can be estimated at low temperatures,
analogously to the case of Kossel crystal [1], as the work done for separation of the appropriate
building block (monomer, dimer, quadrumer etc) from the half crystal position (figure 2) and for
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the subsequent dissociation of this block into single elements [10]. Following the well known
method of Stranski and Kaischew [1], the equilibrium of a large 2D crystal can be determined
by comparison of8L with the separation energy of the building elements from different
sites in the periphery [10]. The obtained equilibrium surfaces for three of the polymorph
structures, monochess, bilayer and screw (figure 2(a)–(c)), are shown in figure 4. Obviously,
the equilibrium large 2D Kossel crystal [2] follows as a limiting case when one returns to a
central symmetry of interaction.

Figure 4. Equilibrium surfaces of large 2D crystals with polymorph structures: (a) monochess—
{10} (BW)′ and{01} (BW)′′; (b) bilayer—{10} (W) and{01} (BW)—and (c) screw—{10} (‘W’)
and{01} (‘W’).

Only one from the two possible ‘white’ and ‘black’ surfaces (see figure 3(c)), alternating
in 〈10〉 and〈01〉 directions, namely the ‘white’ (‘W’) one, belongs to the equilibrium large
2D screw crystal (figure 4(c)) [10]. The same is valid for the white (W) surface, alternating
in the 〈10〉 direction, of the equilibrium large 2D bilayer crystal (see figures 3(b) and 4(b)).
As seen, its equilibrium surface in〈01〉 direction is structurally different, black–white (BW),
but not alternating (figures 3(b) and 4(b)). To the large 2D monochess crystal belong two
equilibrium surfaces:(BW)′ in 〈10〉 direction and(BW)′′ in the〈01〉 direction, which are the
only possible surfaces for this structure (see figures 3(a) and 4(a)). The consecutive steps of
obtaining equilibrium forms of large and small 2D crystals will be described in more detail
separately. Obviously, the applied procedure chooses only one of the possible alternating
surfaces (the so-called white or ‘white’ one). The physical reason for this choice becomes
clear from the atomistic investigation of the equilibrium with the help of the concept of polar
diagram of surface energy.

4. Polar diagram and equilibrium of the 2D model crystals

According to Born and Stern [9], the surface energy of a 2D crystal surface is defined as half the
workW(θ) done in dividing a large crystal along the corresponding crystallographic plane. In
continuous presentation the specific surface energyσ is determined as a macroscopic quantity
which depends on the given geometric orientation, crystallographic and non-crystallographic,
characterized by polar angleθ . The equilibrium form can be deduced from the polar diagram
σ(θ) by means of the Wulff construction (see [2–8]). Following Wolff [6], the workW
(respectivelyσ ) can be calculated microscopically as the total energy of broken bonds (per
unit area). In such a discrete presentation, the orientation dependence of the specific surface
energyσ(m, n) = σ [tan−1(m/n)] can be determined for each crystallographic orientation of
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the large 2D crystal. Herem andn are the numbers of broken periphery bonds along the〈10〉
and〈01〉 crystallographic axes. The used(m, n) notation of surfaces characterizes not only
their crystallographic orientation but also their step structure. For more complicated structures,
however, one needs additionally to know the exact position of the cross section with respect
to the alternating surfaces, because some parallel sections cut bonds with different energy.

4.1. Discrete presentation

Treating microscopically the polar diagram of large 2D model crystals, we start from the well
known macroscopic orientation dependence ofσ for the 2D Kossel crystal (see [3–8])

σ(θ) = σ0(cosθ + sinθ). (1)

Bennema [8] put in (1) the coefficientσ0 = ϕ/2r0, where ϕ and r0 are respectively
the interaction energy and the distance between nearest neighbour building elements (see
figures 1(b) and 2(f)). Using a mathematical induction, we can transform (1) in terms of a
discrete(m, n) presentation (upon assuming thatr0 is unity):

σ{10} = σ{01} = ϕ/2
σ(m, n) = (ϕ/2)(m + n)/(m2 + n2)−1/2.

(2)

Orientation dependenciesσ(m, n), corresponding to the general expression of Wolff [6], can
be obtained in discrete presentations in a similar way also for the more complicated models
from the great family of proposed 2D polymorph crystals. We have demonstrated this approach
on the three polymorph structures discussed in section 3.

In the case of a large 2D monochess crystal, the orientation dependence ofσ is
characterized by a single series ofσ(m, n) values, obtained by mathematical induction and
given by

σ
(BW)′
{10} = ϕ5/2

σ
(BW)′′
{01} = ϕ3/2

σ(m, n) = mϕ5/2(m
2 + n2)−1/2 + nϕ3/2(m

2 + n2)−1/2. (3)

The polar diagram, obtained in discrete presentation, is shown in figure 6(a) by circles.
The more complicated structure of the large 2D bilayer crystal needs an additional

explanation (see figure 5). This structure allows parallel cross sections, cutting different
combinations of bonds. These are the so-called alternating surfaces. Naturally, this leads to
different values ofσ(m, n). For example, dividing the large crystal along the〈01〉 direction, we
create two identical surfaces, both black (line AA, figure 5) or both white (line BB, figure 5),
cutting bonds with energy eitherϕ7 or ϕ1. Along the〈10〉 direction we cut bonds with energy
ϕ3 and create surfaces with a black–white structure (line CC, figure 5). Thus, for each type of
cross section we obtain differentσ values (σ (B){10}, σ

(W)
{10} or σ (BW){01} ) given by the first three of the

following equations:

σ
(B)
{10} = ϕ1/2

σ
(W)
{10} = ϕ7/2

σ
(BW)
{01} = ϕ3/2
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Figure 5. Application of the microscopic version of the Born and Stern definition ofσ(m, n) =
([tan−1(m/n)] to the case of a 2D bilayer crystal.

σ (B)(m, n) = mϕ1/2(m
2 + n2)−1/2 + nϕ3/2(m

2 + n2)−1/2 (n = odd number)

σ (W)(m, n) = mϕ7/2(m
2 + n2)−1/2 + nϕ3/2(m

2 + n2)−1/2 (n = odd number)

σ (BW)(m, n) = m(ϕ1 + ϕ7)/4(m
2 + n2)−1/2 + nϕ3/2(m

2 + n2)−1/2 (n = even number).

(4)

Here, for convenience, the upper index ofσ is used to indicate the most often cut types of
surfaces—black (B), white (W) or black–white (BW). The other types of cross sections in
figure 5 cut different combinations of bonds. As seen, these are bonds with energiesϕ1 and
ϕ3 only (line DD), orϕ7 andϕ3 only (line EE), while in the case of line FF the cut bonds are
with energiesϕ1, ϕ3 andϕ7. The corresponding values ofσ (B)(m, n) andσ (W)(m, n), n being
an odd number, and ofσ (BW)(m, n), n being an even number, are presented in the last three
rows of (4) obtained also by mathematical induction. The polar diagram for a bilayer crystal
is shown in discrete presentation by circles in figure 6(b).

The orientation dependenciesσ(m, n) for the large 2D screw crystal are obtained in an
analogous way and are given by the expressions

σ
(‘B’)
{10} = σ (‘B’)

{01} = ϕ2/2

σ
(‘W’)
{10} = σ (‘W’)

{01} = ϕ6/2

σ (‘B’)(m, n) = (m + n)ϕ2/2(m
2 + n2)−1/2
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(m = even, n = even numbers)

σ (‘W’)(m, n) = (m + n)ϕ6/2(m
2 + n2)−1/2

(m = even, n = even numbers)

σ (‘B’)(m, n) = m(ϕ2 + ϕ6)/4(m
2 + n2)−1/2 + nϕ2/2(m

2 + n2)−1/2

(m = even, n = odd numbers)

σ (‘W’)(m, n) = m(ϕ2 + ϕ6)/4(m
2 + n2)−1/2 + nϕ6/2(m

2 + n2)−1/2

(m = even, n = odd numbers)

σ (‘B’)(m, n) = mϕ2/2(m
2 + n2)−1/2 + n(ϕ2 + ϕ6)/4(m

2 + n2)−1/2

(m = odd, n = even numbers)

σ (‘W’)(m, n) = mϕ6/2(m
2 + n2)−1/2 + n(ϕ2 + ϕ6)/4(m

2 + n2)−1/2

(m = odd, n = even numbers)

σ (‘B’)(m, n) = σ (‘W’)(m, n) = (m + n)(ϕ2 + ϕ6)/4(m
2 + n2)−1/2

(m = odd, n = odd numbers). (5)

These dependencies are also related both to the complicated crystal structure and to the surfaces
alternating in〈10〉 and〈01〉 directions with ‘black’ (‘B’) and ‘white’ (‘W’) structures. The
cutting bonds here are with energiesϕ2 andϕ6, respectively, or different combinations of them.
The obtained polar diagram for a screw crystal in discrete presentation is shown in figure 6(c)
by circles.

4.2. Continuous presentation

In order to obtain the polar diagrams in the usual continuous description (like (1)), the
coefficients before the trigonometric functions are determined from the corresponding series
of discrete values (3)–(5) by their transformation in expressions having the form of (1). These
transformations are equivalent to fitting procedures.

The continuous presentation of polar diagram of the 2D monochess crystal, obtained on
the basis of the series of discrete values (3), is given by

σ(θ) = (ϕ5/2) cosθ + (ϕ3/2) sinθ. (6)

This single curve (6) is drawn with a dashed line in figure 6(a) atθ ∈ [0, π/2].
The more complicated polar diagram of the 2D bilayer crystal is described by three

continuous curves given by

σ (B)(θ) = (ϕ1/2) cosθ + (ϕ3/2) sinθ

σ (W)(θ) = (ϕ7/2) cosθ + (ϕ3/2) sinθ

σ (BW)(θ) = [(ϕ1 + ϕ7)/4] cosθ + (ϕ3/2) sinθ. (7)

These curves are presented in figure 6(b) with dashed lines atθ ∈ [0, π/2].
As follows from (5), theσ(θ)dependence for the 2D screw crystal is described by equations

σ (‘B ’)(θ) = (ϕ2/2) cosθ + (ϕ2/2) sinθ

σ (‘W ’)(θ) = (ϕ6/2) cosθ + (ϕ6/2) sinθ

σ (‘B ’)(θ) = [(ϕ2 + ϕ6)/4] cosθ + (ϕ2/2) sinθ

σ (‘W ’)(θ) = [(ϕ2 + ϕ6)/4] cosθ + (ϕ6/2) sinθ

σ (‘B ’)(θ) = (ϕ2/2) cosθ + [(ϕ2 + ϕ6)/4] sinθ
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Figure 6. Polar diagram of the specific surface energyσ for 2D model crystals with polymorph
structures: (a) monochess, (b) bilayer and (c) screw. The discrete values ofσ(m, n), calculated
from (a) equations (3), (b) equations (4) and (c) equations (5) are presented as circles. The fitting
curves are drawn forθ ∈ [0, π/2] with dashed lines according to (a) equation (6), (b) equations (7)
and (c) equations (8). The used values of the interaction energies areϕ1 = 1,ϕ2 = 0.72,ϕ3 = 0.7,
ϕ5 = 0.6, ϕ6 = 0.56 andϕ7 = 0.3. The illustrations in the centre of each polar diagram show the
equilibrium surfaces of the corresponding large 2D crystals.

σ (‘W ’)(θ) = (ϕ6/2) cosθ + [(ϕ2 + ϕ6)/4] sinθ

σ (‘B ’)(θ) = σ (‘W ’)(θ) = [(ϕ2 + ϕ6)/4] cosθ + [(ϕ2 + ϕ6)/4] sinθ. (8)

The curves (8) are presented in figure 6(c) with dashed lines atθ ∈ [0, π/2].
On the bases of the obtained polar diagrams in discrete (3)–(5) or continuous (6)–(8)

presentation, we determine the equilibrium surfaces, following the Wulff procedure [2, 8]. As
one can see from the inset illustration in the centre of figure 6(c), the equilibrium surfaces of
the large 2D screw crystal are the ‘white’ ones only. Two different equilibrium surfaces
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belong to the large 2D bilayer crystal (see the inset in figure 6(b)) but again only one
of the two alternating surfaces is equilibrium, the white one. In the case of a large 2D
monochess crystal the equilibrium form is trivial (see the inset in figure 6(a)). These results
are identical with those obtained by the method of Stranski and Kaischew [2] and shown in
figures 4(a)–(c).

5. Conclusion

As shown above, for the 2D model crystals with alternating surfaces (like bilayer and
screw ones) there is no single continuous curve describing the transition between neighbour
orientations. In such cases there exist neighbour orientations for which the values ofσ(m, n)

and ofσ(m ± 1, n) or σ(m, n ± 1) belong to different continuous curves. Therefore, it is
clear that not all points of the usual continuous presentationσ(θ) of the polar diagram have
a physical meaning. It is not possible for one to construct theσ(θ) presentation without in
advance analysing the discreteσ(m, n) presentations. The discrete presentations allow one to
determine not only the number of fitting curves but also the unknown coefficients.

As can be expected, both atomistic methods of investigation (by the separation work and
by the polar diagram) lead to identical results for the equilibrium forms of large 2D model
crystals. It is demonstrated also how the polar diagram (and, respectively, the equilibrium
form) is affected by the intermolecular forces and their asymmetry. The models used in this
paper allow comparison of the equilibrium forms of polymorph structures.
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